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experiments, while for the other method, the effects might never be observable.
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1. Introduction

The use of both RR and NS-NS fluxes to generate potentials for the moduli appearing in

Calabi-Yau compactifications of Type IIB string theory [1, 2] has breathed new vigor into

attempts to find inflation in the effective 4-D field theory associated with such compacti-

fications. The generic expectation is that the potentials for the moduli fields could be flat

enough to allow for a phase of slow-roll inflation for at least one, if not more, moduli. This

expectation has been borne out in a number of examples [3 – 5, 21].

The idea of modular inflation from string theory has been around for some time. The

earlier attempts on modular cosmology concentrated on potentials for the dilaton. However,

a detailed study [7] of general properties of these potentials shows that they are either of

the runaway type or too steep for inflation.

One of the difficulties in trying to find inflationary regimes for these potentials is that

typically, more than one field will participate in the slow-roll phase. As an example, in [3],

four fields were relevant to generating inflation. Following such a system is a complex

task, and it is not unreasonable to ask whether there are ways to reduce the number of

inflaton fields that need to be tracked. In this paper, we will list two ways of simplifying
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the analysis by reducing the number of possible inflatons. These methods have strong ties

to the systematics of moduli stabilization in the large volume scheme that were discussed

in ref. [6].

We will start by reviewing the scalar sector of type IIB superstring compactified on

a large volume Calabi-Yau orientifolds. Following ref. [6], we will show that on the large

volume limit, the potential for the moduli will have a scale hierarchy. We then exploit this

hierarchy to approach the problem of moduli stabilization in several stages. It turns out

that this hierarchy also allows us to integrate out some of the moduli from the theory and

simplify the analysis for inflation.

The existence of more than one modulus in the problem can also influence the power

spectrum of metric perturbations observed in the CMB. If these moduli have not yet settled

into their minima during the inflationary phase, their oscillations about these minima could

imprint itself into the power spectrum [8]. Given the new WMAP [9] results, we may be

able to place bounds on how quickly these fields had to have reached their minima. Once we

establish the hierarchical scale structure alluded to in the previous paragraph, we estimate

the size of these effects. We find that in some cases, the effect could be detectable.

2. Review of the scalar sector of type IIB superstring theory

Type IIB superstring theory compactified on Calabi-Yau orientifolds M yields the following

four dimensional effective theory:

L =

∫

d4x
√−g

(

Gαβ̄∂µΦα∂µΦβ̄ + V
)

, (2.1)

where α, β run over all moduli, Gαβ̄ = ∂α∂β̄K is the Kähler metric on the moduli space,

and where K is the Kähler potential, including the α′ corrections [10]:

K = − log

[

−i

∫

M
Ω ∧ Ω̄

]

− log [−i(τ − τ̄)] − 2 log

[

ξ

2

(−i(τ − τ̄)

2

)3/2

+ e−3φ0/2 (V)2/3

]

.

(2.2)

Here τ is the axion-dilaton field, Ω is the (3,0)-form of the Calabi-Yau, (V)2/3 is the

classical volume of M in units of ls = (2π)
√

α′, and ξ = −ζ(3)χ(M)/(2(2π)3). We require

that ξ > 0, or h2,1 > h1,1.

The scalar potential is given by:

V = eK
(

Gαβ̄DαWD̄βW̄ − 3|W |2
)

, (2.3)

where the superpotential W is

W =

∫

M
G3 ∧ Ω +

∑

i

Ai eiaiρi . (2.4)

The first term is the Gukov-Vafa-Witten term [11] and the second one is the non-perturba-

tive part due to D3-brane instantons [12] or gaugino condensation from wrapped D7-branes

(see [13] and references therein). Here G3 = F3 − τH3, with F3 and H3 are RR and NS-

NS 3-form fluxes, respectively, Ai is a one-loop determinant and ai = 2π/N , with N is a

positive integer. Also, ρi ≡ bi + iτi is the complexified Kähler modulus consisting of the
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four-cycle modulus τi:

τi = ∂ti(V)2/3 =
1

2
Dijk tjtk, (2.5)

and the axion bi. The ti measures the area of two-cycle, Dijk are the triple intersection

numbers of the divisor basis [14] and the classical volume is expressed as

(V)2/3 =
1

6
Dijk titjtk. (2.6)

Equations (2.2) and (2.4) completely specify the theory and the problem of moduli

stabilization becomes the problem of finding solutions to ∂αV = 0. However, visualizing

the full potential and finding its minima is a difficult task as is using the full potential to

look for inflationary phases. To do this, we would have to solve the following equations of

motion in an FRW background

Φ̈A + 3HΦ̇A + ΓA
BCΦ̇BΦ̇C + 2GABV,B = 0, (2.7)

3H2 = GABΦ̇AΦ̇B + V, (2.8)

where ΓA
BC is the connection on the metric of the moduli space1. The slow-roll condition

is ε ¿ 1 (for more details, see Appendix A), where the slow-roll parameter is given by

ε =
GABΦ̇AΦ̇B

H2
. (2.9)

As discussed in the previous section, it is almost impossible to deal with the plethora

of moduli that appear in these compactifications, at least as far as inflationary dynamics is

concerned. What we need is a controlled way to “freeze” some of these into place at their

minima, while leaving a subset of them free to induce an inflationary state for the requisite

amount of time.

Thus, we want to somehow consistently decouple some fields, collectively labeled {ψA},
from the inflationary dynamics by putting them at the minima of the potential and let the

rest of the field {φA} be the inflatons, i.e.:

φ̈A + 3Hφ̇A + ΓA
BC φ̇Bφ̇C + 2GABV,B = 0, (2.10)

3H2 = GABφ̇Aφ̇B + V. (2.11)

In this scenario, the slow-roll condition now becomes

ε =
GABφ̇Aφ̇B

H2
¿ 1. (2.12)

The problem in doing this is that there is no reason to expect that a given choice of

{ψA} will work. In general, the solution {ψA
min} to ∂ψAV = 0 will be {φA}-dependent. If

ψA
min = ψA

min

(

{φB}
)

then

ψ̇A
min =

∂ψA
min

∂φB
φ̇B 6= 0. (2.13)

Thus, a careless choice of {ψA} could give the false impression that the slow-roll parameter

is small, i.e. inflation is occurring, when in reality ε might not be small.

1Capitalized Roman letters denote real scalar fields as opposed to the complex ones indicated by the

Greek indices.
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Furthermore, even if ψ̇A = 0, there is the possibility that ψ̈A will feed on the last two

terms of the equation of motion (2.7), such that on a later time ψ̇A will deviate significantly

from 0.

A valid choice of {ψA} should not have the above problems. We will show that the

systematics of moduli stabilization in the large volume scenario is strongly related to finding

the valid choice of {ψA}.

3. Systematics of moduli stabilization in the large volume limit

Following [6], we will be working on the large volume limit, which is defined as the limit

where all τi → ∞ except one, which we denote by τs, with τs ∼ ln (V)2/3. In this limit, the

potential becomes

V ≡ eK
(

Gab̄DaWD̄bW̄ + Gτ τ̄DτWD̄τW̄
)

+

(

eK ξ

2(V)2/3

(

WD̄τW̄ + W̄DτW
)

+ Vα′ + Vnp1 + Vnp2 + Vuplift

)

+ (Vsupp1 + Vsupp2 + Vsupp3 + Vsupp4) , (3.1)

where

Vα′ = 3ξeK ξ2 + 7ξ(V)2/3 + (V)2/32

((V)2/3 − ξ)(2(V)2/3 + ξ)2
|W |2,

Vnp1 = eKGρsρ̄sa2
s|As|2e−2asτs ,

Vnp2 = eKGρsρ̄lias(Ase
iasρsW̄∂ρ̄l

K − Āse
−iasρ̄sW∂ρl

K̄),

Vuplift =
εuplift

(V)2/33 ,

Vsupp1 = eK Gρlρ̄m

(

alAlamĀmei(alρl−amρ̄m)
)

Vsupp2 = eK iGρlρ̄m
(

alAle
ialρlW̄∂ρ̄mK − amĀme−iam ρ̄mW∂ρl

K
)

Vsupp3 = eKGρlρ̄s 2Re
[

alAlasĀse
i(alρl−asρ̄s)

]

,

Vsupp4 = eK iGρlρ̄sal(Ale
ialρlW̄∂ρ̄sK − Āle

−ialρ̄lW∂ρsK̄). (3.2)

The indices a, b run over the complex structure moduli, and the Kähler moduli indices

l,m 6= s. The uplift potential Vuplift ≥ 0 is obtained by adding anti-D3-branes [15] or by

using the supersymmetric D-terms [16]. For simplicity, let us assume that all ai’s are of

O(1), which corresponds to the gauge rank N / 10 (we will discuss the case for smaller ai

in the last section). The first term is positive definite and of O((V)2/3−2
), the second is of

O((V)2/3−3
), and the third is O((V)2/3−2/3

e−(V)2/3

).

The hierarchy between terms in the potential allows us to approach the problem of

moduli stabilization in three stages perturbatively using the inverse volume (V)2/3−1
as

our expansion parameter. First, we will stabilize the axion-dilaton and complex structure

moduli {ΦI} by minimizing the leading term in the potential. Next, by including the second
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term, we will stabilize bs, τs, and (V)2/3, which we denote collectively by {ΦII}. Lastly, we

will stabilize the rest of the Kähler moduli {ΦIII} by including the exponentially-suppressed

last term.

Let ΦI = ΦI0 correspond to the minimum of

eK
(

Gab̄DaWD̄bW̄ + Gτ τ̄DτWD̄τW̄
)

. (3.3)

Since this is positive definite, this means that {ΦI0} is the solution to DaW = DτW = 0.

We can evaluate the GVW superpotential and the first two terms of the Kähler potential

at {ΦI} = {ΦI0}; write these values as W0 and Kcs, respectively.

Next, let us include the O((V)2/3−3
) terms in the potential. Substituting ΦI = ΦI0 +

ΦI1/(V)2/3, where {ΦI1} can depend on {ΦII}, gives us

V =
eKcs

(V)2/34

∑

F1(ΦI0)ΦI1
2 + Vα′ + Vnp1 + Vnp2 + Vuplift,

≈ Vα′ + Vnp1 + Vnp2 + Vuplift, (3.4)

where now

Vα′ ∼ ξ

(V)2/33 eKcs |W0|2,

Vnp1 ∼ (−Dssjt
j)a2

s|As|2e−2asτseKcs

(V)2/3
,

V ′
np2 =

eKcs

(V)2/32 Gρsρ̄lias(Ase
iasρsW̄0∂ρ̄l

K − Āse
−iasρ̄sW0∂ρl

K̄). (3.5)

The minimum of the potential up to O((V)2/3−3
) is then given by

ΦImin = ΦI0,

ΦIImin = ΦII0, (3.6)

with ΦII = ΦII0 the solution to ∂ΦII
(Vα′ + Vnp1 + Vnp2 + Vuplift) = 0. Of course, we can

continue this systematically order by order. Let the minimum value of the potential at the

end of this second stage be V0.

Now, let us include the exponentially suppressed part of the potential. Substituting2

ΦI = ΦI0 + · · · + ΦI2

V0
2/3e(V)2/3

0

,

ΦII = ΦII0 + · · · + ΦII2
(V)2/3

0

1/3

e(V)2/3

0

, (3.7)

2Since the volume is also a modulus we stabilized in the second stage, instead of using the full solution

(V)2/3, we use the leading term (V)2/3

0
in our perturbation.
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where ΦI2 and ΦII2 can be dependent on {ΦIII} we get

V = V0 +
eKcs

(V)2/3
0

4/3
e2(V)2/3

0

∑

F2(ΦI0,ΦII0)ΦI2
2 +

+
eKcs

(V)2/3
0

4/3
e2(V)2/3

0

∑

F3(ΦI0,ΦII0)ΦII2
2 + Vsupp1 + Vsupp2,

≈ V0 + Vsupp1 + Vsupp2, (3.8)

where Vsupp1 and Vsupp2 are independent of ΦI2 and ΦII2. Thus, we have the minimum of

the full potential at

ΦImin = ΦI0 + · · · + O(
1

(V)2/3
0

2/3
e(V)2/3

0

),

ΦIImin = ΦII0 + · · · + O(
(V)2/3

0

1/3

eV0

),

ΦIIImin = ΦIII0, (3.9)

where ΦIII0 is the solution to ∂ΦIII
(Vsupp1 + Vsupp2) = 0.

Neglecting volume suppressed terms, solution (3.9) can be written as

ΦImin = ΦI0, ΦIImin = ΦII0, ΦIIImin = ΦIII0. (3.10)

This means that solving ∂αV = 0 perturbatively can also be understood as an effective

field theory approach: stabilize {ΦI} by using only the leading term of the potential,

integrate {ΦI} out, stabilize {ΦII} with the O((V)2/3−3
) terms, integrate them out, and

lastly stabilize {ΦIII} by the remaining potential.

4. Toward modular inflation

Understanding the moduli stabilization problem using the language of effective theory, one

can guess that the following will be valid approaches to simplify inflation analysis:

1. Integrating out the complex structure moduli and the axion-dilaton and then using

the remaining theory to find inflation.

2. Integrating out the complex structure moduli, axion-dilaton, bs, τs, and (V)2/3 and

then using the remaining theory to find inflation.

We will see that these approaches are valid by analyzing the equations of motion from

the full theory. The necessary metric, inverse metric, and connection for the following

subsections are given in Appendix B.

– 6 –
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4.1 First approach

Basically, we are trying to decouple complex structure moduli and the axion-dilaton from

inflationary dynamics. First, we turn on only the fluxes needed to stabilize the complex

structure moduli and the axion-dilaton, so that ΦI = ΦI0. Then, we incorporate the

non-perturbative effects to create a potential for the Kähler moduli, which will be the

inflatons.

Let ΦI = ΦI0 + χ, where ΦI0 À χ and χ̇(t = 0) = 0. Let us also assume that the

inflatons are in the inflationary regime. Then, the fluctuations of the complex structure

moduli about their minima satisfy the following equation at t = 0:

χ̈a + 2GabV,b + 2GaτV,τ = 0. (4.1)

Since ΦI0 is at the minimum of the leading terms of the potential χ̈a ∼ O((V)2/3−3
).

Similarly, for the axion-dilaton, at t = 0,

χ̈τ +Γτ
τlτm φ̇lφ̇m +Γτ

τlτs φ̇
lφ̇s +Γτ

τsτs φ̇
sφ̇s +2

(

Gτ τ̄V,τ̄ + GτaV,a + GττlV,τl
+ GττsV,τs

)

= 0,

(4.2)

where φi can be either the axion bi or the 4-cycle modulus τi. Again, since ΦI0 is at

the minimum of the leading terms of the potential, Gτ τ̄V,τ̄ ∼ GτaV,a ∼ O((V)2/3−3
),

while GττlV,τl
∼ O((V)2/3−13/3

) and GττsV,τs ∼ O((V)2/3−4
). Furthermore, since we are

assuming that slow-roll obtains,

Γτ
τlτm φ̇lφ̇m .

1

(V)2/37/3

V

Gτlτm

∼ 1

(V)2/34 ,

Γτ
τlτs φ̇

lφ̇s .
1

(V)2/38/3

V

Gτlτs

∼ 1

(V)2/34 ,

Γτ
τsτs φ̇

sφ̇s .
1

(V)2/32

V

Gτsτs

∼ 1

V4
. (4.3)

Putting all these results together tells us that χ̈τ (t = 0) ∼ O((V)2/3−3
).

At the next instant ∆t > 0, χ̇(∆t) = χ̇(0) + χ̈∆t = χ̈∆t. This Taylor’s expansion

is valid only for small ∆t, and since H−1 ∼ (V)2/33/2
, the only small time scale in the

theory is the string scale, which is equal to 1. Therefore, χ̇a ∼ χ̇τ ∼ O((V)2/3−3
). The

terms 3Hχ̇ ∼ O((V)2/3−9/2
), Γ χ̇χ̇ ∼ O((V)2/3−6

), and Γ χ̇φ̇ ∼ O((V)2/3−14/3
) still cannot

compete with the derivative of the potential. Thus, as long as we are in the inflationary

regime, χ̈ ∼ O((V)2/3−3
) and χ̇ ∼ O(V−3). Therefore, the contribution of the complex

structure moduli and the axion-dilaton to the slow-roll parameter ε is

εcs ∼
Gχ̇χ̇

V
∼ 1

(V)2/33 . (4.4)

Thus, as long as G φ̇φ̇
V < 1, we do not have to worry about the contribution from {ΦI}.

Therefore, we can decouple them from inflation analysis.

– 7 –
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Furthermore, calculating order of magnitudes, one should be able to see that the

contributions of χ in the equation of motion of the inflatons are in fact negligible, thus

validating equation (2.10).

An example of inflationary model where only the complex structure moduli and the

axion-dilaton are stabilized can be found in [3]3.

4.2 Second approach

In this approach, after fixing {ΦI}, instead of turning on all the non-perturbative effects

at once, we turn on only the one that corresponds to τs, so that ΦI = ΦI0 +O( 1

(V)2/3
) and

ΦII = ΦII0. Next, we turn on the rest of the non-perturbative effects to switch on the

potential for {ΦIII}. Let ΦI = ΦI0 + χI , where χI ¿ 1

(V)2/3
and χ̇I(t = 0) = 0, and let

ΦII = ΦII0 + χII , where ΦII À χII and χ̇II(t = 0) = 0. Let us also assume that {ΦIII} is

in the inflationary regime.

Note that the potential is exponentially suppressed. On the other hand, all geometry

related quantities are ∼ (V)2/3α
and even if α > 0, the geometrical quantities cannot

compete with e(V)2/3

in the denominator. Because all we want to say is that the contribution

from the kinetic energy of {ΦI} and {ΦII} terms toward ε is negligible, we can neglect the

(V)2/3α
factor and concentrate only on the exponential factor.

This allows us to infer that, χ̈I,II(t = 0) ∼ e−(V)2/3

. Following the analysis done above

for the first approach, we can say that a string time later χ̇I,II ∼ e−(V)2/3

so that 3Hχ̇ ∼
e−2(V)2/3

and Γ χ̇χ̇ ∼ e−2(V)2/3

, which means that these terms are negligible compared to

the other terms in the equation of motion. Thus, as long as {ΦIII} are in the inflationary

regime, χ̈ ∼ e−(V)2/3

and χ̇ ∼ e−(V)2/3

. Therefore, the contribution of {ΦI} and {ΦII} to ε

is

εΦI,II
∼ Gχ̇χ̇

V
∼ 1

e(V)2/3
. (4.5)

Therefore, we can decouple {ΦI} and {ΦII} from inflation analysis, and only worry about

finding inflationary regime for {ΦIII}.
An example where one can get a single-field inflation from this approach is given in [4].

5. Oscillation effects on the spectrum

We have seen that the large volume limit allows us to decouple a sufficient number of the

moduli so that the problem of finding inflationary phases becomes tractable. However,

when we say that the stabilized moduli are at the potential minimum, we mean that the

zero mode is frozen. The fluctuations around this zero mode could be oscillating about the

minimum and this may give rise to interesting effects [8]. In particular, these oscillations

could imprint themselves on the CMB power spectrum; it should be noted that the exact

nature of the effect depends on the model.

We need to be mindful of the requirement that the amplitude of oscillations be small

enough that the energy density contained in them not disrupt the inflationary phase. This

3Even though [3] does not include the α′ corrections, it should be possible to extend their analysis to

include them.
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can be accomplished by just waiting long enough, since the energy density in these oscilla-

tions decays as that of non-relativistic matter.

What we would like to do is to calculate the power spectrum of the inflatons in the

presence of these oscillations of the complex-structure moduli. To do this completely is a

difficult problem, but we can at least estimate the order of magnitude of the effect within

the large volume approximation scheme used above. We will see that the two approaches

dealt with above can give rise to very different, and potentially measurable results.

5.1 First approach

Let us consider the quantum fluctuations of the inflatons, δφl. A mode with wave number

k has the following equation of motion

δφ̈l
k + 3Hδφ̇l

k + Γτl
tu

(

φ̇tδφ̇u
k + δφ̇t

kφ̇u
)

+ Γτl
tu,vφ̇

tφ̇uδφv
k +

(

GτltV,tu + Gτlt
,uV,t

)

δφu
k

+ |k|2 e−2Htδφl
k = 2Γτl

τtχ̇
τδφ̇t

k + 2Γτl
τt,uχ̇τ φ̇tδφu

k

+ (Γτl
τ τ̄ ,tχ̇

τ χ̇τ + GτlτV,τ t + Gτlτ
,tV,τ ) δφt

k, (5.1)

where t, u, and v can be τs or τm with m 6= s. If there were no oscillating χ fields, the
equation for the fluctuations would be the one above, but with the right hand side set
to zero. Now let’s turn to estimating the order of magnitude of the various terms in the
Eq. (5.1):

LHS ∼ δφ̈
l
k +

 

O(
1

(V)2/34/3
) δφ̇

s
k + O(

1

(V)2/37/3
)δφs

k

!

+
X

m6=s

 

O(
1

(V)2/33/2
) δφ̇

m
k + O(

1

(V)2/33
) δφ

m
k

!

+ |k|2 e
−2Ht

δφ
l
k,

RHS ∼

 

O(
1

(V)2/313/3
) δφ̇

s
k + O(

1

V11/3
)δφs

k

!

+
X

m6=s

 

O(
1

(V)2/34
) δφ̇

m
k + O(

1

(V)2/313/3
) δφ

m
k

!

. (5.2)

Similarly, for the mode δφs
k
, we get

δφ̈s
k + 3Hδφ̇s

k + Γτs
tu

(

φ̇tδφ̇u
k + δφ̇t

kφ̇u
)

+ Γτs
tu,vφ̇

tφ̇uδφv
k +

(

GτstV,tu + Gτst
,uV,t

)

δφu
k

+ |k|2 e−2Htδφs
k = 2Γτs

τtχ̇
τδφ̇t

k + 2Γτs
τt,uχ̇τ φ̇tδφu

k

+ (Γτs
τ τ̄ ,tχ̇

τ χ̇τ + GτsτV,τ t + Gτsτ
,tV,τ ) δφt

k. (5.3)

Examining the left and right hand sides of this equation gives us:

LHS ∼ δφ̈
s
k +

 

O(
1

(V)2/33/2
) δφ̇

s
k + O(

1

(V)2/32
)δφs

k

!

+
X

m6=s

 

O(
1

(V)2/35/3
) δφ̇

m
k + O(

1

(V)2/38/3
) δφ

m
k

!

+ |k|2 e
−2Ht

δφ
s
k,

RHS ∼ O(
1

(V)2/34
)
“

δφ̇
s
k + δφ

s
k

”

+
X

m6=s

O(
1

(V)2/314/3
)
“

δφ̇
m
k + δφ

m
k

”

. (5.4)

The equations of motion for the modes then become

δφ̈
l
k + |k|2 e

−2Ht
δφ

l
k +

"

O(
1

(V)2/34/3
)

 

1 + O(
1

(V)2/33
)

!

δφ̇
s
k + O(

1

(V)2/37/3
)

„

1 + O(
1

V4/3
)

«

δφ
s
k

#
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+
X

m6=s

"

O(
1

(V)2/33/2
)

 

1 + O(
1

(V)2/35/2
)

!

δφ̇
m
k + O(

1

(V)2/33
)

 

1 + O(
1

(V)2/34/3
)

!

δφ
m
k

#

= 0,(5.5)

δφ̈
s
k + |k|2 e

−2Ht
δφ

s
k+

"

O(
1

(V)2/33/2
)

 

1 + O(
1

(V)2/35/2
)

!

δφ̇
s
k + O(

1

(V)2/32
)

 

1+O(
1

(V)2/32
)

!

δφ
s
k

#

+
X

m6=s

"

O(
1

(V)2/35/3
)

 

1 + O(
1

(V)2/39/3
)

!

δφ̇
m
k + O(

1

(V)2/38/3
)

 

1 + O(
1

(V)2/32
)

!

δφ
m
k

#

= 0,(5.6)

and we can neglect the contributions from χ. Therefore, in order to calculate the spectrum,

we only need to solve

LHS of eq. (5.1) = LHS of eq. (5.3) = 0. (5.7)

In this paper, we have assumed the use of non-perturbative effects from D3-instantons

or gaugino condensations with low rank gauge group (i.e.: small N , ai of O(1)). However,

there are many models where N needs to be large. For moderate N , as long as all ai’s

are of the same order of magnitude, the hierarchy we have described still exist, only with

smaller gaps between the stages. Therefore, most of our arguments here are applicable to

the cases with larger N , with the exception that there is a possibility that the modification

of the power spectrum in the second method can be larger and thus, observable. If N gets

to a comparable size as the stabilized volume, then not only our arguments are no longer

valid, but terms from higher order instantons will also no longer be suppressed.

Furthermore, we can estimate the effect of the oscillation of {χ} in the spectrum. Since

all the coefficients in front of δφk and δφ̇k are in the form of A(1 + B) with B ¿ 1, the

ratio of the effect of {χ} in the spectrum with the spectrum will be the biggest B. Thus,

δP

P
(|k|) ∼ 1

V4/3
. (5.8)

For the model in [3], the volume is (V)2/3 = 99 in string units. Thus, the change in the

spectrum from complex-structure moduli and the axion-dilaton is of order 10−2. Since the

current experiment can measure δP/P up to order 10−3 −10−2, it is necessary to calculate

this effect in model [3]4.

5.2 Second approach

For the second approach, since χ̇ ∼ e−(V)2/3

and V ∼ e−(V)2/3

then in the equation of

motion, the contribution of χ will also be of order e−(V)2/3

. On the other hand, the other

terms are of order
√

V ∼ e−V/2. Thus, the effect of χ’s oscillation on the spectrum is

δP

P
(|k|) ∼ 1

eV/2
. (5.9)

Since the volume is at least 102 − 103 string units, this effect is too small to be measured.

4To do so, one has to extend the analysis in [3] to include the α′ corrections.
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6. Discussion

Motivated by the scale hierarchy of the moduli in the large volume scheme, we have

approached the problem of moduli stabilization by dividing it into several stages. We

would like to emphasize that the decoupling in the moduli stabilization procedure does

not come from any underlying assumptions such as suggested in the original KKLT pro-

cedure [15]. The decoupling comes from approaching this problem perturbatively using

1/(V)2/3-expansion.

We also have shown that the fields that are stabilized in the earlier stage(s) can be

integrated out of the theory, thus reducing the number of possible inflatons and rendering

the search for an inflationary phase in this theory easier [4].

While we did not pursue the detailed analysis of this possibility, we also have seen that

the oscillation of the stabilized fields could, at least in principle, modify the scalar power

spectrum. For the second method, this modification is small and cannot be measured by

our current experiments. Thus, we can calculate the power spectrum as if there is no

oscillating fields in the background. However, we saw that in the first approach, there is

the possibility that an effect could be observable. This merits further study.

As noted in [6], our arguments may not be completely airtight. The treatment of the

the loop determinant Ai as a constant, may not be warranted. In particular, if Ai depends

on the Kähler moduli, our argument might not be valid. Since polynomial dependence on

the Kähler moduli is unlikely, we only have to worry for the case As ∼ Vα (we do not have

to worry for Al due to the exponential-suppression on the denominator). In that case, we

can save our argument by redefining τs ∼ (α + 1) lnV.

As noted in [6], our arguments may not be completely airtight. The treatment of the

the loop determinant Ai as a constant, may not be warranted. In particular, if Ai depends

on the Kähler moduli, our argument might not be valid. If As ∼ Vα (we do not have

to worry for Al due to the exponential-suppression on the denominator), we can save our

argument by redefining τs ∼ (α + 1) lnV. However, the polynomial dependence on the

Kähler moduli is unlikely due to holomorphy and shift symmetry.

From the point of view of inflationary dynamics, there is also an issue of the likelihood

of the initial conditions. Given that {ΦI} for the first approach (or {ΦI} and {ΦII} for

the second approach) are at the minimum, how likely will it be for the rest of the moduli

to be in the slow-roll regime? This requires further analysis.

We also would like to emphasize that our approaches might not be the only way to

simplify the analysis of inflation in flux compactifications. A different approach would be

to change the definition of the large volume limit. Nevertheless, the trick will be the same,

namely exploitation of the scale hierarchy of the moduli. For example, by defining large

volume limit as the limit where only one τl → ∞ and the rest τi ∼ lnV, we can get a single-

field inflation like in [4] without having to restrict ourselves to Calabi-Yau orientifolds with

h1,1 = 2. Thus, ’decoupling’ a field ψ from the inflationary dynamics by ’constraining’ it

to the minima, while letting inflaton φ rolls over a potential V (φ) that has a comparable

scale to the potential for ψ will not be valid.
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In the literature, there are inflationary models where only axions are integrated out

(e.g.: [21, 18]). This is done under the assumption that the axions are heavier than the

rest of the Kähler moduli. However, as we have discussed in the previous paragraph, this

assumption might be of suspect. To validate these models, it is crucial to find an approach

where there is a hierarchy between the potential of the axions and the potential for the

rest of the Kähler moduli.

It would be interesting to see whether there is a correlation between the number of left-

over moduli and the power spectrum. If there is, then as cosmological data becomes more

precise, it would not be surprising that one can put constraints on the extra dimensions

using cosmological data (an initial attempt at falsifying stringy inflationary models was

given in ref. [18]).
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A. Slow-roll condition for multi-field inflation

Consider an FRW background. From Einstein equations, we can get the evolution of the

scale factor

H2 ≡
(

ȧ

a

)2

=
ρ

6
, (A.1)

where assuming homogeneity and isotropy, the energy density of the system ρ = GABφ̇Aφ̇B

+V . Using Friedmann equation (A.1) and the mass conservation, we get the equation for

the acceleration of the scale factor

ä

a
= −ρ + 3p

6
, (A.2)

where p = GABφ̇Aφ̇B − V .

Inflation is defined as an epoch where ä/a > 0. Since

ä

a
= H2(1 − ε); ε ≡ − Ḣ

H2
=

GABφ̇Aφ̇B

H2
, (A.3)

inflation ⇔ ε < 1. Notice that from equation (A.2), inflation also means that

2GABφ̇Aφ̇B < V. (A.4)

If we further assume that

2GABV,B À Φ̈A + ΓA
BCΦ̇BΦ̇C , (A.5)

we get

ε =
GABV,AV,B

4V 2
. (A.6)
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Up until this point, this analysis resembles the one for the case of single-field inflation.

In single-field inflation, one will get another condition η < 1 for inflation by demanding

equation (A.4) is consistent with equation (A.5). However, in multi-field inflation, one is

not able to define η in that manner. Since our main discussion does not involve η, we will

not discuss this matter any further5.

B. The dependence of metric, inverse metric, and connection on classical

volume

In the large volume limit, the Kähler potential becomes

K = 3φ0 − log

[

−i

∫

M
Ω ∧ Ω̄

]

− log [−i(τ − τ̄)] − 2 log

[

1 +
e3φ0/2

(V)2/3

ξ

2

(−i(τ − τ̄)

2

)3/2
]

−2 log (V)2/3,

= 3φ0 − log

[

−i

∫

M
Ω ∧ Ω̄

]

− log [−i(τ − τ̄)] − 2e3φ0/2

(V)2/3

ξ

2

(−i(τ − τ̄)

2

)3/2

−2 log (V)2/3. (B.1)

Noticing that the relation between volume and the four-cycle moduli is like (V)2/3 ∼ τit
i,

and that (V)2/3 ∼ τl
3/2, l 6= s in the large volume limit, we get

∂(V)2/3

∂τl
∼ tl ∼ τl

1/2 ∼ (V)2/31/3
, (B.2)

for l 6= s, and

∂(V)2/3

∂τs
∼ ts ∼ τs

1/2 ∼ O(1). (B.3)

Therefore, the components of the metric become

Gτ τ̄ = O(1), Gτ ρ̄l
∼ 1

(V)2/35/3
, Gτ ρ̄s ∼ 1

(V)2/32 ,

Gρlρ̄m ∼ 1

(V)2/34/3
, Gρlρ̄s ∼ 1

(V)2/35/3
, Gρsρ̄s ∼ 1

(V)2/3
. (B.4)

The components of the inverse metric are given in [20].

Gτ τ̄ = O(1), Gτ ρ̄l ∼ 1

(V)2/32/3
, Gτ ρ̄s ∼ 1

(V)2/3
,

Gρlρ̄m ∼ (V)2/34/3
, Gρlρ̄s ∼ (V)2/32/3

, Gρsρ̄s ∼ (V)2/3. (B.5)

Let us remind ourselves that we need to change variables from the complex moduli

fields to the real scalar fields for calculation in Section 4. Since the components of the metric

(and inverse metric) for the real scalar fields are of the same order with the corresponding

5One possibility in defining η is given in [19].
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components for the complex moduli fields, we will adopt a somewhat loose notation for the

connection. The components of the connection necessary for calculation in Section 4 and

Section 5 are

Γτ
τlτm =

1

2
Gτ τ̄ (Gτl τ̄ ,τm + Gτmτ̄ ,τl

− Gτlτm,τ̄ )

+
1

2
Gττn ( Gτlτn,τm + Gτmτn,τl

− Gτlτm,τn )

+
1

2
Gττs (Gτlτs,τm + Gτmτs,τl

− Gτlτm,τs ) ,

∼ O(1)
1

(V)2/37/3
+

1

V2/3

1

(V)2/32 +
1

(V)2/3

1

(V)2/37/3
,

∼ 1

(V)2/37/3
, (B.6)

Γτ
τlτs =

1

2
Gτ τ̄ (Gτl τ̄ ,τs + Gτs τ̄ ,τl

− Gτlτs,τ̄ )

+
1

2
Gττm ( Gτlτm,τs + Gτsτm,τl

− Gτlτs,τm ) +
1

2
Gττs Gτsτs,τl

,

∼ O(1)
1

(V)2/38/3
+

1

V2/3

1

(V)2/37/3
+

1

(V)2/3

1

(V)2/35/3
,

∼ 1

(V)2/38/3
, (B.7)

Γτ
τsτs =

1

2
Gτ τ̄ ( 2Gτs τ̄ ,τs − Gτsτs,τ̄ )

+
1

2
Gττl ( 2Gτsτl,τs − Gτsτs,τl

) +
1

2
Gττs Gτsτs,τs ,

∼ O(1)
1

(V)2/32 +
1

V2/3

1

(V)2/35/3
+

1

(V)2/3

1

(V)2/3
,

∼ 1

(V)2/32 , (B.8)

Γτs
τlτm =

1

2
Gτs τ̄ ( Gτl τ̄ ,τm + Gτmτ̄ ,τl

− Gτlτm,τ̄ )

+
1

2
Gτsτn (Gτlτn,τm + Gτmτn,τl

− Gτlτm,τn )

+
1

2
Gτsτs (Gτlτs,τm + Gτmτs,τl

− Gτlτm,τs ) ,

∼ 1

(V)2/3

1

(V)2/37/3
+ (V)2/32/3 1

(V)2/32 + (V)2/3 1

(V)2/37/3
,

∼ 1

(V)2/34/3
, (B.9)

Γτs
τlτs =

1

2
Gτs τ̄ ( Gτl τ̄ ,τs + Gτs τ̄ ,τl

− Gτlτs,τ̄ )

+
1

2
Gτsτm (Gτlτm,τs + Gτsτm,τl

− Gτlτs,τm ) +
1

2
Gτsτs Gτsτs,τl

,
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∼ 1

(V)2/3

1

(V)2/38/3
+ (V)2/32/3 1

(V)2/37/3
+ (V)2/3 1

(V)2/35/3
,

∼ 1

(V)2/32/3
, (B.10)

Γτs
τsτs =

1

2
Gτs τ̄ ( 2Gτs τ̄ ,τs − Gτsτs,τ̄ )

+
1

2
Gτsτl ( 2Gτsτl,τs − Gτsτs,τl

) +
1

2
Gτsτs Gτsτs,τs ,

∼ 1

(V)2/3

1

(V)2/32 + (V)2/32/3 1

(V)2/35/3
+ (V)2/3 1

(V)2/3
,

∼ 1

(V)2/32 , (B.11)

Γτs
ττl

=
1

2
Gτs τ̄ ( Gτ τ̄ ,τl

+ Gτl τ̄ ,τ − Gττl,τ̄ )

+
1

2
Gτsτm (Gττm,τl

+ Gτlτm,τ − Gττl,τm )

+
1

2
Gτsτs (Gττs,τl

+ Gτlτs,τ − Gττl,τs ) ,

∼ 1

(V)2/3

1

(V)2/35/3
+ (V)2/32/3 1

(V)2/37/3
+ (V)2/3 1

(V)2/38/3
,

∼ 1

(V)2/35/3
, (B.12)

Γτs
ττs =

1

2
Gτs τ̄ ( Gτ τ̄ ,τs + Gτs τ̄ ,τ − Gττs,τ̄ )

+
1

2
Gτsτl ( Gττl,τs + Gτsτl,τ − Gττs,τl

) +
1

2
Gτsτs Gτsτs,τ ,

∼ 1

(V)2/3

1

(V)2/32 + (V)2/32/3 1

(V)2/38/3
+ (V)2/3 1

(V)2/32 ,

∼ 1

(V)2/3
, (B.13)

Γτs
τ τ̄ =

1

2
Gτs τ̄ Gτ τ̄ ,τ̄ +

1

2
Gτsτl (Gττl,τ̄ + Gτ̄ τl,τ − Gτ τ̄ ,τl

)

+
1

2
Gτsτs (Gττs,τ̄ + Gτ̄ τs,τ − Gτ τ̄ ,τs ) ,

∼ 1

(V)2/3
O(1) + (V)2/32/3 1

(V)2/35/3
+ (V)2/3 1

(V)2/32 ,

∼ 1

(V)2/3
, (B.14)

Γτl
τmτn =

1

2
Gτl τ̄ ( Gτmτ̄ ,τn + Gτnτ̄ ,τm − Gτmτn,τ̄ )

+
1

2
Gτlτo (Gτmτo,τn + Gτnτo,τm − Gτmτn,τo )

+
1

2
Gτlτs ( Gτmτs,τn + Gτnτs,τm − Gτmτn,τs ) ,
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∼ 1

(V)2/32/3

1

(V)2/37/3
+ V4/3 1

(V)2/32 + (V)2/32/3 1

(V)2/37/3
,

∼ 1

(V)2/32/3
, (B.15)

Γτl
τmτs =

1

2
Gτl τ̄ ( Gτmτ̄ ,τs + Gτs τ̄ ,τm − Gτmτs,τ̄ )

+
1

2
Gτlτn (Gτmτn,τs + Gτsτn,τm − Gτmτs,τn ) +

1

2
GτlτsGτsτs,τm,

∼ 1

(V)2/32/3

1

(V)2/38/3
+ V4/3 1

(V)2/37/3
+ (V)2/32/3 1

(V)2/35/3
,

∼ 1

(V)2/3
, (B.16)

Γτl
τsτs =

1

2
Gτl τ̄ ( 2Gτs τ̄ ,τs − Gτsτs,τ̄ )

+
1

2
Gτlτm ( 2Gτsτm,τs − Gτsτs,τm ) +

1

2
Gτlτs Gτsτs,τs ,

∼ 1

(V)2/32/3

1

(V)2/32 + V4/3 1

(V)2/35/3
+ (V)2/32/3 1

(V)2/3
,

∼ 1

(V)2/31/3
, (B.17)

Γτl
ττm =

1

2
Gτl τ̄ ( Gτ τ̄ ,τm + Gτmτ̄ ,τ − Gττm,τ̄ )

+
1

2
Gτlτn (Gττn,τm + Gτmτn,τ − Gττm,τn )

+
1

2
Gτlτs ( Gττs,τm + Gτmτs,τ − Gττm,τs ) ,

∼ 1

(V)2/32/3

1

(V)2/35/3
+ V4/3 1

(V)2/37/3
+ (V)2/32/3 1

(V)2/38/3
,

∼ 1

(V)2/3
, (B.18)

Γτl
ττs =

1

2
Gτl τ̄ ( Gτ τ̄ ,τs + Gτs τ̄ ,τ − Gττs ,τ̄ )

+
1

2
Gτlτm (Gττm,τs + Gτsτm,τ − Gττs,τm ) +

1

2
Gτlτs Gτsτs,τ

∼ 1

(V)2/32/3

1

(V)2/32 + V4/3 1

(V)2/38/3
+ (V)2/32/3 1

(V)2/32 ,

∼ 1

(V)2/34/3
, (B.19)

Γτl
τ τ̄ =

1

2
Gτl τ̄ Gτ τ̄ ,τ̄ +

1

2
Gτlτm ( Gττm,τ̄ + Gτ̄ τm,τ − Gτ τ̄ ,τm )

+
1

2
Gτlτs ( Gττs,τ̄ + Gτ̄ τs,τ − Gτ τ̄ ,τs ) ,
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∼ 1

(V)2/32/3
O(1) + (V)2/34/3 1

(V)2/35/3
+ (V)2/32/3 1

(V)2/32 ,

∼ 1

(V)2/31/3
. (B.20)
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